DO NOT
XEROX

g Statistics,

C

MICRO CHARTS, Z80, 6502-65XX, 8080-8085, 8086-8088, 8048

Family, UNIX SHELL, 54/7400 TTL pinouts, BASIC Algorithms,
15 Minute BASIC, C L‘nguager, BASIC (IBM-PC/XT/AT & GW)

100%

PLASTIC

and send check to Micro Logic, POB 174, Dept 15,
Hackensack, NJ 07602. (201) 342-6518.

Genuine colorful plastic MICRO CHARTS with crystal clear
print are only $5.95 each. To order: list itles, add $1 postage,

INSTANT
ACCESS

© 1987

ﬁlcno LOGIC, POB 174

HACKENSACK, NJ 07602

HOW TO USE
THIS
MICRO CHART

The INSTRUCTION SET section
describes each instruction
and gives its addressing
modes, assembler syntax,
size, execution time, and
effect on the flags.

The OPERANDS AND ADDRESSING
section has general
information on operand
sizes, data organization in
memory and registers,
addressing modes, stacks,
and queues.

The EXCEPTION PROCESSING
section explains the 68000's
response to errors, traps,
interrupts, and other
unusual conditions and its
use of reserved memory
locations.

The PINOUTS section lists
the IC package pin numbers
and signal names.

The ABBREVIATIONS section
defines abbreviations used
throughout this Micro Chart.

ABBREVIATIONS

* = Active low signal name
suffix, or boolean
inversion

$ = Hexadecimal

Ad = Destination Address
register (AD-A7)

An = Address register (AO-

A
Rs = Source Address register
(RO-A7)

addr = addre:

lddr.L = 32-bit absolute

addre:
addr.hl = 16-bit absolute
address
B = rand size is byte
BU = rand size is byte or
word
BuL = Operand size is byte,
word, or long word
C = Carry flag in CCR
cc = Anz of the sixteen

on codes: CC, CS,

EqQ, F, Gfé GT, HI, LE, LS,

bg, mI, s PL, T, \C, or
CCR = Condition Code

register
CLKs = Execution time of
instruction in CLK cycles

da4 = 4-bit immediate vector

number

daB = Immediate data byte
dal6 = Immediate data word
da32 = Immediate data long

word

Od = Destination Data

register (D0-D7

diB = B-bit displacement

di1s = 16-bit displacement
= Data tsgistur (D0-D7)
= Source Data register

(DO-D7

dst = Destination operand

ea = Effective address

Hex = Hexadecimal

III = Interrupt mask (Bits

10,9,8) in SR

L = Cborlnd size is long

LSB = Least sigﬂficant (low
order) bit; Bit O

MSB = Most sig\ificant (high
urder) bit

= Negative flag in CCR
PC = Program Counter

register
PI = Privileged instruction
Rd = Destination register
(AD-A or DO-07
= Number of read bus

cycles during instruction
execution

reg = Register

regs = Registers

Rs = Source register (AO-A7
or DO-D7

S = Sq:\ervisar bit (Bit 13)

in
SP = Stack Pointer register
(SSP or USP)
SR = Status register,
including CCR
sn: = Source operand
= Supervisor Stack

Pmnter register
T = Trace bit (Bit 15) in SR
USP = User Stack Pointer
register
V = Overflow flag in CCR
W = Operand size is word
WL = Operand size is word or
long word
Words = Length of
instruction in words
Urites = Number of write bus
cycles during instruction
executmn

= Extend flag in CCR

Index register (AD-A7
or DD—D7)

= Zero flag in CCR

N

OPERANDS AND
ADDRESSING

INSTRUCTIONS: 1 to S words. Operation,
register, length, and sometimes operand
are given in first (Operation) word. O-
4 Extension words specify immediate
data, source address, and destination
address operands in that order; each, if
present, is 1-2 words.

REGISTERS: Sixteen 32-bit general
purpose rsgxstets consisting of eight
ers (D0-D7) and eight Address
registers (AO-A7) ona 32-bit Program
Counter (PC), and one 16-bit Status
Register éSR . The Condition Code
register (CCR) is the lower byte of the
SR. A7 is the system Stack Pointer.
One of two registers, SSP or USP, is
used as A7; when one is active, the
other is inaccessible; see Supervisor
and User States below.

STATUS AND CONDITION CODE REGISTERS:
User Byte (CCR)

System Byte

TOSOOIIIOOOXNZVEC

= Trace mode, 0 = executs mode
: 1 = Supervisor state, 0 = User state
Ir\terrwt priority:

highest and non-maskable)
DDG = D lowest)
X,N,Z,V,C - See Flags
Other bits are usually zero

SUPERVISOR STATE: The CPU is in
Supervisor state when S=1. A7 is the
SSP. All memory accesses are to the
Supervisor memory space. All
instructions are allowed. Only these
privileged instructions can switch the
CPU to User state by clearing the S bit:
:#EDI to SR, EORI to SR, MOVE to SR, or

USER STATE: The CPU is in User state
when A7 is the USP. All
memory accesses are to the User memory
space. An attempt to execute a
Privileged instruction will cause an
exception. Only an exception can switch
the CPU to the Supervisor state.

OPERANDS

BIT NUMBERS: Low order (least
significant) bit is numbered O.

OPERAND SIZES: Add suffix .B, .U, or .L
to instruction mnemonic for Byte (8
bits), Word (16), or Long Word (32).
The default size is Word.

DATA REGISTER OPERANDS (DO-D7): can be
, 8, 16, or 32 bits. y low order
part of register is used or changed for
byte and word operands; high order part
is not affected. Only one bit is used

or changed for bit operations.

ADDRESS REGISTER OPERANDS (AD-A7): If
destination, all 32 bits are affected,
SOURCE WORD OPERAND IS SIGN-EXTENDED
to 32 bits before ration.
all.or low order half is used.

INDEX REGISTER (AO-A7 or DO-D7): Any
address or data register can be used as
a word (Xn.W, sign-extended low order
word) or a long word (Xn.L) index
register.

MEMORY OPERANDS: can be 1, 8, 16, or 32
bits. 1 byte per address. High order
byte of word has same address (always

even) as word; low order byte has next
higher address (odd). Instructions and
multibyte data start on even

If source,

STACKS AND
QUEUES

SYSTEM STACK: A7 is the system Stack
Pointer used for subroutine calls.
Operands and Addressing. The stack
grows from higher to lower addresses; SP
points to last word pushed on stack; SP
rements before push, increments after
pop. Any instruction using -(A7) as the
destination operand is a push; any
instruction using (A7)+ as the source
operand is a pop.

USER STACK: To grow from higher address
to lower address, use -(Ad) to push,
(As)+ to pop; An points to tup item.
To grow from lower address to hu))hu
address, use (Ad)+ to push, -(As) to
pop; An points to next free spot.

USER QUEUE: A FIFO list. To grow from
lower address to higher address, use
$Ad)+ to put, -(As) to Ea To grow
rom higher address to lower address,
use -(Ad) to put, (As)+ to get.

ADDRESSING MODES

SOURCE,DESTINATION: Instructions that
move data from a source to a destination
are written in the form:

mnemonic src,dst

IMPLIED: Operand is in one of these
registers: CCR, PC, SR, SP, SSP, or USP.
Example: TRAPV

QUICK IMMEDIATE (_Q #_): 3-bit operand
(1 to 8% is in operatIon word for ADDQ
an 8-bit operand (-128 to &127)
is in operation uord for MOVEQ.
Example: ADDQ #7,D:

IMMEDIATE (#da): Byte operand is in low
order byte of extension word; word
operand is in extension word; long word

rand is in 2 extension words.
Example: ORI.B #$7F,D6

ABSOLUTE SHORT (addr.W): Extension word,
sign-extended to 32 bits, is address of
operand. Example: ASL VARB.W

ABSOLUTE LONG (addr.L): Two extension
words are 32-bit address of operand.
Example: CLR COUNT.L

PROGRAM COUNTER RELATIVE WITH
DISPLACEMENT (di16(PC)): Address of
operand is sum of address of extension
word and sig1~ext|ndad displacement in
extension word

Example: LEA LEEKLP(PC) Ad

PROGRAM COUNTER RELATIVE WITH INDEX AND
DISPLACEMENT (diB(PC,Xn)): Address of
operand is sum of a ss of extension
word, contents of index register, and
sign-extended displacement in low byte
of extension word. Index register can
be any Address or Data register.
Example: JMP NEXT(PC,D1.L

DATA REGISTER DIRECT (Dn): Operand is in
data register. Example: CLR.B DO

ADDRESS REGISTER DIRECT (An): Operand is
in address register.
Example: CMPA.L DO,AO

ADDRESS REGISTER INDIRECT ((An)):
Address of operand is in address
register. Example: LSR (AS)

ADDRESS REBISTER INDIRECT WITH
PREDECREMENT (-(An)) OR POSTINCREMENT
((An)+): Addms of operand is
address register. Address register is
decremented before use or incremented

after use by 1, 2, or 4 depending on

operand size. If size is byta lnd
rsgistor is SP. adjustmnt is b not
1. ™ et tag)e

Long word at address N has second word
at address N+2; second long word is at
address N+4. Most significant digit of
BCD bxu is in high order bits; less
significant digits are in bytes at
higher addresses. The FC2-FCO outputs
distinguish program references from data
references; all writes are data
references; all operand reads except PC
relative are data references.

FC2 FC1 FCO Eycla Type
(reserved by Mututnla)
User Data

User Program

Eramved for user def.)
reserved by Motorola)
Supervisor Data
Supervisor Program
Interrupt Acknowledge

The data bus strobes define how the data
bus is used:

TEXEC O
TErCZErT
ErECErEr

Data Strobes Bus Use
UDS* LDS* R/W* D15-D8 D7-DO

H H 3 n n

L L M 15-8 7-0
H L H n 7-0
L H H 15-8 n

L L L 15-8 7-0
H 5 & 7-Om 7-0
L H E 15-8 15-8m

Active low signal
High

Low

Don't care
No valid data
Maybe

IoxrTw
nonwowowow

ADDRESS REGISTER INDIRECT WITH
DISPLACEMENT (di16(An)): Address of
operand is sum of sis xtended
axtansion word and address register
con

Exumplul "EORI.B #9$55,LIGHTS(A2)

ADDRESS REGISTER INDIRECT WITH INDEX AND
DISPLACEMENT (diB(An,Xn): Address of
operand is sum of address register
contents, index register contents, and
sign-extended displ-cmunt in LOW BYTE
of extension word

Example: ROL.U BIAS(AU A.W)

68000

PROGRAMMER'’S INSTANT REFERENCE CARD

EXCEPTION PROCESSING

The CPU's response to unusual internal or
external conditions.

EXCEPTION VECTORS:
Number Addr

Dec Hex Hex Use CLKs.Reads.lUrites

CHART
high. The Cl;U outputs HALT* low when it
stops se of double bus fault. Then

only‘a Iow input on RESET* can restart the
CPU. See RESET* and BERR*.

ADDRESS ERROR: When the CPU fetches a word
from an odd address, it responds as it
does for a bus error. If a bus error
occurs during address error exception

ing, the CPU halts.

(Reset SSP; see note below)
RESET* 40.6.0

Bus Error (BERR*) 50.4.7
Address Error 50.4.7
Illegal Instruction 34.4.3
Divide by zero 42.5.4

CHK operand out of bounds
TRAPV when V=1 34.4.3
Privilege violation 34.4.3
Trace 34.4.3

Line 1010 emulator 34.4.3
Line 1111 emulator 34.4.3
reserved

reserved,

reserved

Unitialized irpt 44.5.3
(reserved)

0SC (reserved)
Spurious irpt 44.5.3
Ext irpt 1 autovector 44.S.
autovector 44.5.
autovector 44.5.
tor 44.5.
r 44.5.
44.5.
autovector 44.5.
TRAP 00 instruction 38.4.4

TRAP #15 instruction 38.4.4
(reserved)

(reserved)

Oth User interrupt 44.5.3
191st User interrupt 44.5.3

Vectors 0 and 1 are in Supervisor Program
memory space; all others are in Supervisor
Data memory space.

EXCEPTION VECTORS: Each (except 0) holds
ti

handling routine.
vector; it is the value loaded intu the
SSP after a RESET*.

VECTOR NUMBER: Provided by CPU or external
logic. When multiplied by four, gives
address of vector.

EXCEPTION PROCESSING TIMES: CLKs is the
number of CPU CLK cycles to process the
exception and fetch the first two words of
the handler routine. Assumes a four CLK
interrupt acknowl bus cycle and no
wait states. If are not shown here,
see the Instruction Set section.

EXCEPTION PRIORITIES (Hig’lest to Lowest):
Reset; bus error and halt; address error;
trace; external (user) interrupts 7
through 1; illegal instruction; privilege
violation; trap, check, and divide by
zero.

EXCEPTION PROCESSING: All exception
processing is done in the Supervisor state
including use of the SSP for stacking.
Except as noted below, the : 1. Saves
SR internally. 2. Forces S=1 and T=0 in
SR. 3. Gets vector number. 4. Pushes
the saved SR then the PC onto the stack
using the SSP. 5. Loads the PC from the
exception vector. 6. Executes a handler
routine. saved PC is usually the
address of the first word of the next
instruction.

EXCEPTION DESCRIPTIONS

Listed in order of decreasing priority.

(reserved): Reserved for future use by
Motorola; do not use

RESET*: If RESET* and HALT* are BOTH input
low, the current bus cycle is aborted, and
exception processing begins when they
return high. The interrupt mask is set to
7 (III1=111), no stacking occurs, and the
SSP and PC are loaded from Vectors O and
1. No other CPU registers are affected.
The CPU outputs RESET* low when it
executes the RESET instruction, but no
registers are affected.

BUS ERROR: When BERR* is input low, the
CPU aborts the current bus cycle and
floats the address and data busses. When
the BERR* input returns high, the

stacks the Program Counter (unpredictable
value), the Status Register, and four more
words in this order: 1. The first word of
the executing instruction; 2. The lower 16
bits of the aborted bus address; 3. The
upper 16 bits of the address; 4. Five bits
of bus cycle information: Bit 4: 1=read,
O=write; Bit 3 = 0 if the CPU was
executing an instruction or processing a
TRAP, TRAPV, CHK or divide b xaro
exception; Bit 3 = 1 if the

processing any other exception; Eits 2-0:
FC2-FCO.

When HALT* and BERR* are both input low,
the CPU will abort the cycle, then re-run
it when BERR* then HALT* return high. If
a bus error occurs during bus or address
error exception processing or while
reading the vector table, the CPU halts.

HALT*: When HALT* is input low (with
RESET* and BERR* high), the CPU finishes
the current bus cycle, stops, and floats
the address and data lines. Bus
arbitration operates normally during halt.
The CPU will continue when HALT* returns

TRACE: When T=1 in the SR, an exception is
forced after each instruction executes.
An exception caused by an instruction is
processed before the Trace exception is.

EXTERNAL INTERRUPTS: External logic
encodes a prmnt{ level on IPL2*, IPL1%*,
IPLO* (level sensitive). Level 7 is
highest and not maskable. Level 1 is
lowest. Level 0 is no interrupt. If the
encoded level is 7, or greater than III,
the CPU starts exception processing after
it completes the current instruction. The
CPU sets III to the encoded value when it
forces S=1 and T=0 in the SR. The vector
number is supplied internally §autnvsctnr)
if UPA* is low or externally (Interrupt
Rcknwlad?e bus cycle) if UPA* is high; if
BERR* is low, the Spurious Interrupt
vector is used. Uninitialized 68000
support chips give vector number 15.

USER INTERRUPTS: These are extarnal
interrupts for which external 1

provides an B-bit vector ($40-$F) during
the Interrupt Acknowledge bus cycle.

ILLEGAL, EMULATOR, AND UNIMPLEMENTED
INSTRUCTIONS: Any invalid instruction
opcode will cause an exception. Motorola
reserves each of these for future
definition except as follows. Opcodes
$4AFA, $4AFB, and $4AFC will always cause
an Illegal Instruction exception; the
first two are reserved for Motorola
pmducts. and the third is reserved for
customer opcode with 1010
($Axxxx) or 1111 (stxxx) in Bits 15-12
will cause a Line 1010 or Line 1111
Enulntur exception, respectively. All
emented opc cause an
Illegal Instruction exception.

PRIVILEGE VIOLATION: Execution of a
privileged instruction (PI) in User state
causes a tivi.le? viglation exception
(ANDI #da16,SR; EORI ldﬂﬁ,sﬁ; I'OVE

src,SR; "OVE ,USP; MOVE USP,Ad

#da16,5R; RESET; RTE; STOP lda15). Ths
saved PC is the address of the first word
of the PI.

TRAP, TRAPV, AND CHK: The TRAP instruction
always causes a trap exception, and four
bits in the instruction word provide part
of the vector number. The TRAPV and CHK
instructions cause an exception if certain
conditions exist when they execute.

BUS ARBITRATION: determined by the BR*,
BG*, and BGACK* signals.

PINOUTS 4, 0i, 538" top view

* means active low.
< and > show direction.
= means bidirectional. D3= 2 63=D6
nc means no connection 02= 3 62=07
inside. D1= 4 61=D8
DO= 5 60=D3
AS*< 6 59=010
UDS*< 7 58=D11
LDS*< 8 57=D12
R/W*< 9 56=D13
DTACK*>10 55=D14

D4= 1 64=D5

HALT*=17 48>A20
RESET*=18 47>A18
UMA*<18 46>A18
E<20 45>A17
UPA*>21 44>A16
BERR*>22 43>A15
IPL2*>23 42>A14
IPL1*>24 41>A13
IPLO*>25 40>A12
FC2<26 39>A11
FC1<27 38>A10
FCO<28 37>A8
A1<29 36>A8
A2<30 35>A7
A3<31 34>R6
A4<32 33>AS

[MICRO LOGIC, POB 174

HACKENSACK, NJ 07602

INSTRUCTION
SET

This table gives the
addressing modes for
each instruction. The
Cycle and Flag Code
column gives a code
for operand sizes,
instruction length,
timing, and affect on
flags. Example: Under
ADD src,Dd the flag
code A applies to all
adressing modes; cycle
code 1 applies to
ADD.B Ds,Dd and ADD.W
Ds,Dd; and cycle code
4 applies to ADD.L
Ds,Dd. See Flag and
Cycle Code tables.

Oper- Cycle and
Inst ands Flag Code
ABCD Ds,Dd
ABCD (As). (Adg B42 C

Add 2-dig

numbers lus X
nDD src.Dd A (add)

ﬁs ll.ﬂ LA
ins; BB L22
As)+ BWE L22
As 2 BW11 L29
di16 As) BW1B L45
diB(As,Xn) BW25 L53
addr.U BW18 L4S
addr.L BW39 L6Y
di16(PC) BW1B L4S

diB(PC,Xn) BU25 LS3
ADD Ds,dst A (add)
Ad BU/

15 LS1
Ad + BU1S LS1
BW23 LB5S
d11E Ad) BW35 L73
diB(Ad,Xn) BW4B LB3
addr.w BW3S L73
addr.L BWSS LSO
ADDA src,Ad N
Ds uLs
As 4
gks} wn3 L2
As)+ wn3 L22
- Asz 1 L29
di16(As) W33 L4S
diB(As,Xn) W44 L53
addr.u W33 L4S
addr.L wS7 LB
di16(PC) W33 L4S
diB(PC,Xn) W44 L53
we L38
Add to Ad
ADDI #da,dst A
0d Bu8 L38
skd} Bu35 LSO
Ad)+ BW35 LSO
-(Ad BMG Lg7
di16(Ad) ~BuwSS L101
di8(Ad,Xn) BW70 L105
addr.u BWSS L101
addr.L BW8O L107
Add immediate
ADDQ #da3,dst A
0d BU1 L4
Ad ua
2 BU1S LS1
Ad)+ Bu1S LS1
-(Ad BW23 LBS
di16(Ad) BW35 L73

di8(Ad,Xn) BW4E LB3
addr.u
addr.L
quick immediate
data §3 bits: 1-8); 1
word instr.
ADDX Ds,Dd BW1 L4 A
~(As),~(Ad) Bu42 L96
(‘I‘{dd operands and X

AND (See ADD, but no

As,0d) Logical Aw S
ANDI (See ADDI) S
ANDI

ASL Ds,Dd
#da3,0d
Ad,

ﬂdf

di16 Ad)
di8(Ad,Xn)
addr .U u3!
addr.L wss A
Arithmetic shift left
memory word by 1 bit
or Od by count m Ds
or immediate da

(3); zero fill; 1ast
bit out goes to C and
X; set V=1 if MSB
chi y else V=0,
If (8:):0 or #da3=0,
set flags only; flag

code is S
ASR (See ASL) B/S
Arithmetic shift
right memory word by
1 bit or Dd by count
in Ds or immediate
data (3); MSB fill;
last bit out goes to
C and X. Ds)=0
or #da3=0, set flags
only; flag code is S
Bce diB cc true 11 N
false 4
Bec di16 cc true 12
cc false 17
Branch if cc is true;
di8=0 not allowed;
cc=T,F not allowed
EEHG Ds,dst V

aQ
o

Ad 815
Ad)+ B15
~(Ad) 823

di16(Rd) B35
diB(Ad,Xn) B4

addr.U B35
Kaddr.L B58

daB,CCR BS2 A

ANDI MﬂE SR WS2 A (PI)
AND immedia

BWS L1D k/S

BWS L10 A/S
wns A

BCHG #daB,dst
0d u?

il
di16(Ad)
di8(Ad,Xn) 570
addr.U
addr.

Flip bit specified by
src in location given
by dst; put result
bit in Z (2)
BCLR (See BCHG,
except:) V

0d LS

s
#da8,Dd L24
Clear bit specified
by src in location
given by dst, put
complement

original bit in Z (2)
BRA di8 MmN

BRA di16 12 N
Branch always; diB=0
not allowed

BSET (See BCHG) V

Set bit specified by
src in location given
by dst; Dut

complement of
original I:ut in z(2)
BSR di8
BSR di16 b'7 N
Branch (call) to
subroutine; push long
word address of next
instruction using SP;
diB=0 not allowed
BTST Ds,dst V

0d L3

B6

B8

B11

B18

B82S

818

B3C

B18

B25

da8
BTST #da8,dst V
L12

gAd B18
Ad)+

Ad
4i16(Ad) B39
di8(Ad,Xn) B48
addr.U B33

comp. bit
specified by src in
location given by
d;t; no change to dst

CHK src
In-Bomds/ Out

Ds ws/w109
As NZ%‘IU

w21/u110
- /112
di16(As) Wa4/W113

diB(As,Xn) ||‘wl:;z/mm

addr .U/ 44/W113
addr,L /U1
di16(PC) W44/W113
diE(PC Xn) WS2/w114
#da16 w25/W111

Check Dd low word
against 0 and upper
bound; cause
sxc.ption if less
than 0 (MSB=1) or

r than
§uur2r;| (u-mrr
$8000 ?’;@F) of
Uw’

BAH L3 s
BW1S LS1

T

dﬂﬁzkd)
diB(Ad,Xn) BW4E LB3
ddr .U BW35 L73

Ds
I

.
:1115%:«3)
dLB(As.Xn)
addr.u =

addr,

di16(PC)

di8(PC,Xn) Bw25 L53
Compare Dd to src;
subtract src from Od,
set flags, don't
change operands; BLT,
for example, branches
after CMP if Od is
less than src
CMPA src,Ad T
Ds w3

As uL3
éAs; un L22
As)+ w11 L22
-(Rs w13 L29
di16(As) W25 L4S
diB(As,Xn) W33 LS3
addr.l.ll W25 L4S
addr . w48 L69
uns(pc) W25 L4S
diB(PC Xn) W33 LS3
w12 L27

Ccmpare Ad to src as
P (5)

68000

PROGRAMMER'S INSTANT REFERENCE CARD

CMPI #da,dst T
0d BuB L27

Ad; BW18 LS8
Ad)+ BuW18 LS8
d BW2S L63
di16(Ad) ~ Bu39 L79
diB(Ad,Xn) BW4B L85
addr.U Bu38 L78
addr.L BW62 L83
Compare dst to

immediate data as CMP
(dst - immediate

data

anPm (As)+, (Ad)+

Bu14 L! T

Compare 2 memory
operands as CMP
DBcc On,dil6 N

cc true 17

cc false & branch 12
cc false & no br. 25
Decrement and branch
until cc is ttue;
1)if cc is true,

to next instmction.
2)if cc is false,
decrement low word of
Ds; 3)if Ds is -1, go
to next instruction;
4)if Ds is mot -1,
branch (loop); DBRA

same as DBF
DIVS src,Dd T
Ds wnia
As un3
As)+ wn32
-(Rs w134
di16(As) W35
diB(As,Xn) W136
addr.U wn3s
addr.L w37
di16(PC w13s

dis(| C,))(n) w136
#da16 w3
Divia signed long Dd

remainder (same sign
as dividend unless
zaml in high word of
Dd; if src is zero,
cause Divide By Zero
Exception; if
dividend is larger
than a signed word,
set V=1, leave Dd
unchanged, and end
early; N and Z
describe quotient but
are undefined if V=1;
set C=0 always. ClKs
is mlx; min is 90% of

DIVU src,0d T
Ds w24

As w125
As)+ wnas
;éksz wna7
16(As) 128
diB(As,Xn) s
lddr unas
30

di16(PC) w128

dm(pc Xn) W129
n26
Divlda msigmd long

remainder in high
word of Dd; if src is
zero, cause Divide By
Zero Exception; if
dividend is larger
than a word, set V=1,
leave Dd unchal
and end early;
Z are undefined

quotient; set Z=1 if
quotient is zero; set
C=0 always. CLKs is
max; min is 90% of

max

EOR (See ADD Ds,dst
Logical Exclusive
like bits give a zero
bit; diffari.nq bits

EORI (See ADDI) S
Logical Exclusive OR

EORI #da8,CCR A
EORI #da16,SR WS2 A
Logical Exclusive OR
1nln.diut| to SR (PI)

EXE Rs.Rd L3N
Exchange the contents
of 2 regs; use Ds,Ad
mt As,Dd

T Dd w1 s
Ext'nd sign; fill
e or word

ILLEGAL
Invalid object codes
cause Illegal
instruction exception

6N

e
di16(Ad)
diB(Ad.Xn) 3

dd

di16(PC)

diB(PC Xxn) 25

Jump unc: onditimally
JSR (Ad) 32
di16(Ad)

diB(Ad Xn) BIJ

addr

diB(PC,Xn) 67

Jump to subroutine;
push long word
address of next
instruction using SP

LE(ZA src,Ad N

di16(As)
diB8(As,Xn) L17
addr.w

di1E(PC)

di8(PC,Xn) L17

Load effective
address; calculate
long word absolute
address of operand,
and put address in Ad
for later use

LINK As,di16 36 N
Link and allocate
stack space; save As
contents on stack,
copy new SP into As,
and add di16 to SP;
SP then points to
lowest and As to
highest addts:z1+1 of
stack e; 6
must b:";'is

ement of size;
use at start of
subroutine to reserve
temporary data space
on stack; undo with
UNLK
LSL (See ASL) B
Logical shift left
memory word by 1 bit
or Dd by count in Ds
or immediate data
(3); zero fill; last
bit out s to C and

pesest!

Logical shift right
memory word by 1 bit
or Dd by count in Ds
or immediate data
(3); zero fill; last
bit out goes to C and
X. If (Ds)=0 or
#0a3=0, set flags
only; flag code is S

MOVE src,dst S
Move from src to dst;
see MOVE table,
except as follous

MOVE src,SR (PI) and

MOVE src,CCR A
Ds
As; w29
Rs)+ w28
- wa
6 As) WS3
dis(ls Xn) W66
addr .U ldS.‘S
addr.L
di16(PC) uss

diB(PC Xn) WE6
#da1 w3

3

If to CCR, only low
byte is affected
MOVE SR,dst N

0d w

Ad w1s

Ad)+ wns
~(Ad w23
di16(Ad) U35
dm(m.x") W4
addr.u 5
addr.L

FDVEAI.LISFUi ;N
MOVE USP,Ad L1

addr.u [K:))
addr.L we2 L102
MOVEM src,rl N

ils; ws6 L8

As)+ WS6 L
dl‘lﬁgks; w78 L1
diB(Rs,Xn) W4 L104
addr.U w78 L
addr.L. ws2 L106
di16(PC) W78 L100
diB(PC,Xn W L104

regs
(00-07, AO-A’I) to or
from consecutive
memory locations; 1s
in 16-bit list
bit map rl sa ve regs
to move; LSB gi

D7-00 from start
address minus
thr lower
addwrms. and final
Ad points to last
word written; for
other modes order is
D0-D7-A0-A7 from
start address through
higher addresses;
(As)+ mode final As
points to last word
read plus 2; word
rands read from
memory are sign-
extended to 32 bits;
1 extra read cycle
occurs in memory to
reg instruction.
Example: MOVEM.L
#$8002, (AS) would
move D1 to ERS
AS)+23 AS
not changed

MOVEP Ds,di16(Ad)
. 74 N
MOVEP di16(As),0d
w34 L72 N
Move 2 or 4 bytes of
peripheral data
between a Data reg
and alternate bytes
of memory; high order
byte moves
to/from address, next
lower byte to
address+2, etc.;
bytes move on upper
half of data bus if
address is even,
lower half if address
is odd; An does not
change; for B8-bit
peripherals
MOVEQ #daB,Dd L1 S
Move byte of
imodiats (m:lck)
datl xtended
3 510, o a bate
ag (1 word instr.)
src,0d and
Nf.’l.lj src,0d 5

As \I|117
As)+ w7
-(As w18
6118 As) W20
diB(As.Xn) w21
w120

& 1s(pc)

dia(DC Xn) hl12;
Mtiply word in Dd
by word src; put long
product in Dd; signed

or un:
NBCD Dd

B3 C
E“d B15
Ad)+ B1S
—(Ad nzs
di16(Ad
di8(Ad,Xn) aas
addr .U
addr.L

BSG
Negate BCD byte with
extend; subtract
operand and X from
zero; gives 10's

oY (cu_n) s
Lugiial (1's)

OR (See MD, except no

As,Ad) S
Logical OR
ORI (See ADDI) S

Logical OR immediate
ORI #da8,CCR BS52 A

ORI dﬂﬁ SR W52 (PI) A

Logical m immediate
to SR or CCR

PEA (Ad) L16 N
di16(Ad L36
diB(Ad,Xn) L55
I I.

&;C L.'!G
r.ﬁa(Xn) LS5
Push nffnct:lve
address; calculate
long word absolute
address of operand
and push address onto
stack for later use
RESET 123 (PI) N
Output RESET* line
low for 124 CLKs; no
CPU regs are affected
ROL (See ASL) U
Rotate left memory
word by 1 bit or Dd
by count in Ds or
immediate data (3);
last bit out goes
back in and to C. If
Ds)=0 or #da3=0, set
llgs only; flag code

S
ROR (See ASL) U
Rotate right memory
word by 1 bit or Dd
by count in Ds or
imdhto data (3);
last bit out goes
back in and to C. If
(Ds)=0 or #da3=0, set
{lags only; flag code

S
ROXL (See ASL) B

ROL with extend; same
as ROL except last
bit out goes to C and
X3 X goes bhack in.

If (Ds)=0 or #da3=0,
set flags only; fllg
code is U; set C to X
ROXR (See ASL) B

ROR with extend; same
as ROR except last
bit out goes to C and
X; X goes back in.

If (Ds)=0 or #da3=0,
set flags only; flag
code is U; set C to X
RTE S0 (PI) A
Return from
exception; pop SR
then PC from stack

RTR 50 A

Return and restore;

pop CCR then PC from

stack; upper byte of

SR is not affecbad
3

CYCLE CODES

Cycle codes give
instruction length in
words and execution
time in ClLKs. Bus
read and write cycles

CLK cycles each. If
bus wait states occur,
you must add them to
the CLKs. The numbers
of read and write bus
cycles per instruction
are given for this
purpose.

Listed in order of
increasing CLKs,
increasing words,

,0d B3
SBCD (As). (Ad) B42 C
Subtract 2-digit BCD
src and X from dst

op increasing
executing; start if T reads+writes, and
was 1 or after reset increasing urites.

or higher priority
interrupt occurs
SUB (See ADD) A
Subtract src from dst
SUBA (See ADDA) N

For ordering only, s=1
and r=2 are assumed.

r = # of regs moved
s = shift count

Cycle Words.CLKs.
Code Reads.lUrites

pork

by
&

oLl

RONSNELLD

NuBPURNBERNURWURNUNRNURNURNWN SN NG B0
)

di‘lB Ad)
di8(Ad,Xn) 350
] B46

B70
Test and set; set N
and Z per dst, then
set Bit 7 of dst; not
interruptible between
write

FREFFFNNNNNNNNDOHOL

onbLbbblhbohobosbbnbbbobo=0b

.
b

NNNNS S S S S WNNNS S S WNNN S RSN R 2 BN SN
L L L L L L L L L L L L L LLL L L LD DD

ooonono0ns

N

o

@

PP EO® 3
HHNUBNUBUNWD WD LR

by

B

-
>

14 N
Unlink and deallocate
stack space; copy As

25 b b b b ub b B

Rs; use after LINK to
restore stack and As

ohoLohiLboviblbonbb

NASUUNNNN ==

8RB

(23 Bit number is modulo 8 for memory
, modulo 32 for reg operand

(3) Shift or rotate count is modulo 8 for

memory operand, modulo 64 for reg operand

(4) A dst operand in memory is read before

it is written

(5) Fhr are not affected if dst is Ad,
or CP)

MOVE TABLE

dst-

? diB(Ad.
<wmm»#uw] T

MOVE.B and MOVE.W src,dst:

MICRO
CHART

N
o

IS SRS SIS SIF S SN S

N=O

3+1.0

e

BBy
[NE=TN

5
I
B

CUNNS S B PUUWWWNNNN
N
+ e

h
NN =N NN
bbbbN!\I:\lNNNNBB

NED

hioy Lbbrhby BbbhbihLb:
N &
N H

4+1.0

e

SN =N ©

SEfoss
roossn

by

£

N
>

+1.0

5
£1:

b
NSOo.

PoAT

3+2r.0

o

SRRShBY

A nroE0m
NRONSO. o« DN

§i

2r
+1.0

i
s

BdRy
(ﬂmﬁl‘ﬂld

2
ind
i
b
§

3
3
2
2
2
2
3
3
3
n
4
4
4
2
3
4.
4
4
2
2
3
3
n
S
5,
5,
1
3
3
3.32.5.2
3

2.78.3.0
2.80,3.0
3.82.4.0

2.182.2.0
1.164.2.0
2.186.3.0
2.168.3.0
3.170.4.0

CONDITION DEFS

Carry Clear
Carry Set
1

oNnoQ

se
Creater u(m("‘.v‘)

ter
(N.V. Z‘)Q(N' V‘ Z‘)
Hig:r nr 5-: C‘

Less or
Zb(N.V‘&o(N‘ W)
Lower

Lower or Same C+Z
Less Than (N.V*)+(N*.V)
Minus N

Not Equal z*

Plus N*

True 1
Overflow Clear V*

means AND 3
PmanN;Gans
are signed results; H &
Lower are unsigned resul

Ds 1.7 19 26 40
As 1 7 19 26 40
As 615 35 46 59
As)+ 615 35 46 S8 Shift and rotate only
-(hz 1123 46 54 70 BCD only; C is decimal
di16(As) 1835 59 70 80 carry or borrow (1)
diB(As,Xn) 25 46 70 77 86
w 59 70 80 Compare and divide only
oL 80 86 94 Rotate only
di16(PC) 1835 59 70 80 Bit ops only
diB(PC,Xn) 25 46 70 77 86 CHK only
40 49 63
mean all; N means none;
M:NE L srl:,dstx T. U, V, U mean some
36 47 60 ? becomes undefined
S 36 47 60 cleared to zero
ks 44 51 73 83 90 set/cleared according to result
14 51 73 80 not changed
- As 22 85 83 97
di16(As) 34 73 S0 97 101 Condition for flag=1,
diB(As,Xn) 4583 97 99 105 except as noted in
addr.u 34 73 90 97 101 Flag Bit Flag Name instruction descriptions
addr.L 58 90 101 105 107 ——
di16(PC) 34 73 90 97 101 X 4 Extend Carry
diB(PC,Xn) 45 83 97 99 105 N 3 tive MSB nf result = 1
2060 81 87 95 z 2 ero Result=0
* MOVEA.UW ur MOVEA.L src,Ad v 1 Overflow Overflow occurs
C 0 Carry Carry or borrow occurs

30V4HNS LOH NO -
30Vd 1ON Oa

siybu Iy PHOM
W30 pue ‘wnjwaid ‘qnjo ‘anbojejes ‘jooys ‘seleaq

20920 PN “HOeSuaxoeH ‘pLL 80d ‘dioD 21607 010N
Aq paysiiand ‘'vO puepeQ ‘weyeibuj 'y siund Aq pajybukdod

"3S0dHNd HVINJILYVd V HOd
SS3ANLI HO ALITIGVLINVHOUIW
40 SIILLNVHHVM a31NdWI
HO SS3UdX3 ON 3HV IHIHL

weyesbu| "y spnd
uoyiny

VSEL#

	Side 1
	How o Use This Micro Chart
	Abbreviations
	Operands and Addressing
	Operands
	Stacks and Queue
	Addressing Modes
	ASCII
	Exception Processing
	Exception Descriptions
	Con't

	Pinouts

	Side 2
	Instruction Set
	ABCD - BCHG
	BCHG - CMPA
	CMPI - JSR
	LEA - MOVEM
	MOVEP - RTE
	RTR - UNLK

	Cycle Codes
	Instruction Notes
	Condition Defs
	Move Table
	Flags

